ar X iv : m at h - ph / 0 61 00 39 v 1 1 7 O ct 2 00 6 Harmonic analysis on a Galois field and its subfields

نویسنده

  • A. Vourdas
چکیده

Complex functions χ(m) where m belongs to a Galois field GF (p ℓ), are considered. Fourier transforms , displacements in the GF (p ℓ) × GF (p ℓ) phase space and symplectic Sp(2, GF (p ℓ)) transforms of these functions are studied. It is shown that the formalism inherits many features from the theory of Galois fields. For example, Frobenius transformations are defined which leave fixed all functions h(n) where n belongs to a subfield GF (p d) of the GF (p ℓ). The relationship between harmonic analysis (or quantum mechanics) on GF (p ℓ) and harmonic analysis on its subfields, is studied.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ar X iv : m at h - ph / 0 11 00 12 v 1 9 O ct 2 00 1 Functional Equations and Poincare Invariant Mechanical Systems

We study the following functional equation that has arisen in the context of mechanical systems invariant under the Poincaré algebra:

متن کامل

ar X iv : 0 71 1 . 27 39 v 1 [ m at h . N T ] 1 9 N ov 2 00 7 ASYMPTOTIC COHOMOLOGY OF CIRCULAR UNITS

— Let F be a number field, abelian over Q, and fix a prime p 6= 2. Consider the cyclotomic Zp-extension F∞/F and denote Fn the n th finite subfield and Cn its group of circular units. Then the Galois groups Gm,n = Gal(Fm/Fn) act naturally on the Cm’s (for any m ≥ n >> 0). We compute the Tate cohomology groups Ĥ(Gm,n, Cm) for i = −1, 0 without assuming anything else neither on F nor on p.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006